

VSWR of Broad-Band Waveguide Series-T Junction*

The technique of using $\lambda_0/2$ transformers in a waveguide series-T junction to obtain low VSWR's over broad bandwidths has already been presented in the literature.¹ VSWR's less than 1.15 for transmission through the aligned arms, and less than 1.30 for transmission around the bend, were reported for bandwidths of 17.4 percent.

In work performed at RCA, the analysis of Griemann and Kasai was extended² to include the discontinuity reactance of the T junction.³ This discontinuity reactance is primarily responsible for the poorer VSWR performance realized for transmission around the bend.

Recent experimental efforts at RCA have been directed toward improving VSWR performance for transmission around the bend. A broad-band series-T junction was designed using RG-49/U waveguide, with a design-center guide wavelength of 3.400 inches. (See Fig. 1.) Efforts were primarily directed toward achieving low VSWR's over the range 4.4-5.0 Gc. For various reasons connected with the intended application, the transformer impedance selected was 0.794 the full-height waveguide impedance. Determination of transformer lengths was based on considerations of the appropriate reference planes of the T junction, as well as the capacitive discontinuities at the steps.

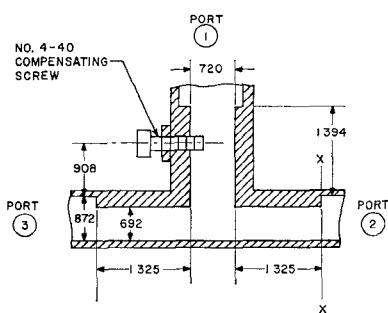


Fig. 1—Compensated E plane T cross section (RG-49/U waveguide), side view.

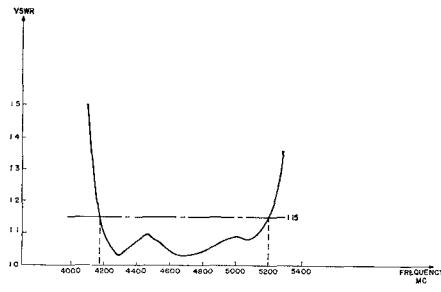


Fig. 2—Measured results: input VSWR at Port ① vs frequency with Port ② short-circuited at X-X and Port ③ terminated in matched load.

* Received May 8, 1963.

¹ J. W. E. Griemann and G. S. Kasai, "Broad-band waveguide series-T for switching," IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-4, pp. 252-255; October, 1956.

² R. Pettai, Private communication.

³ N. Marcuvitz, "Waveguide Handbook," in Radiation Laboratory Series, McGraw-Hill Book Co., Inc., vol. 10, p. 338; 1951.

Neglecting the series discontinuity reactance, VSWR's ≤ 1.24 were obtained over the 4.4-5.0-Gc range for transmission around the bend. By using a 4-40 capacitive compensating screw *within* the $\lambda_0/2$ transformer, significant improvement in VSWR performance was obtained. (See Fig. 2.) A VSWR ≤ 1.15 for transmission around the bend was obtained over the frequency range 4.2-5.2 Gc. The proper location of this screw was determined from conventional impedance measurements and standard Smith Chart impedance-matching techniques.

The broad-band waveguide series-T junction is a useful component in duplexer applications. It should be noted, however, that the performance curve shown in Fig. 2 will not necessarily be duplicated when the physical short circuit on Port ② (Fig. 1) is replaced by the out-of-band reactance of a band-pass or band-reject filter.

R. M. KURZROK
RCA Surface Communications Systems Labs.
New York, N. Y.

and a recent report by the authors² for practically determining interstage coupling apertures, all the significant parameters of the filter may be determined. The four-stage filter was designed to have a Chebyshev response with a 1-db ripple and a 25-Mc bandwidth. The measured response of the filter is shown plotted in Fig. 2. The measured insertion loss of 1.2 db and the skirt selectivity of 30 db compare favorably with theoretical values of 0.7 db and 34 db, respectively. The next spurious response occurs at 7000 Mc which is about fourteen times the center frequency, whereas, a normal quarter-wave filter has a spurious response at approximately three times the center frequency of the filter. Thus, it can be seen that this filter design yields an excellent frequency response characteristic together with a lightweight, compact mechanical construction. The particular filter described above was constructed almost entirely of aluminum and weighed 10 ounces. Thus, by the simple expedient of properly loading a coaxial resonator, one can easily obtain not only a physically small filter, but also one which has an extremely wide stop band.

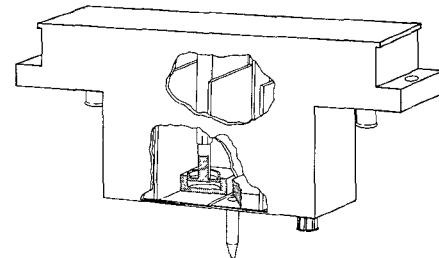


Fig. 1—Four-stage filter.

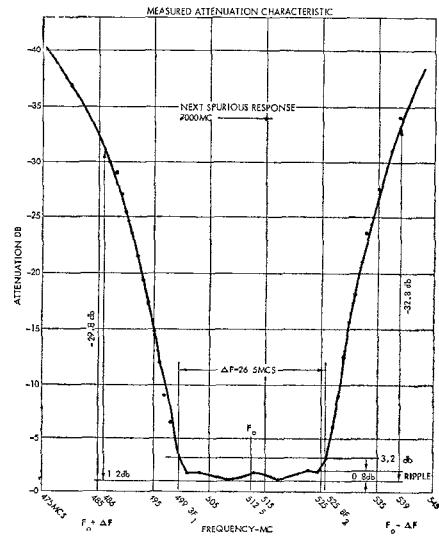


Fig. 2—Frequency vs attenuation.

J. F. LALLY
R. R. CIEHOSKI
RADCOM
Div. of Litton Systems, Inc.
College Park, Md.

* Received April 29, 1963.

¹ S. B. Cohn, "Direct-coupled resonator filters," PROC. IRE, vol. 47, p. 187-196; February, 1957.

² J. F. Lally and R. R. Ciehoski, "Coaxial filters," Electronics, pp. 35-36; August 30, 1963.